
ESC/Java2: Uniting ESC/Java and JML

Progress and issues in building and using ESC/Java2,
including a case study involving the use of the tool to

verify portions of an Internet voting tally system

David R. Cok1 and Joseph R. Kiniry2

1 B65 MC01816
Eastman Kodak R & D Laboratories

Rochester, NY 14650-1816, USA
cok@frontiernet.net

2 Department of Computer Science, University College Dublin,
Belfield, Dublin 4, Ireland? ? ?

kiniry@acm.org

Abstract. The ESC/Java tool was a lauded advance in effective static
checking of realistic Java programs, but has become out-of-date with
respect to Java and the Java Modeling Language (JML). The ESC/Java2
project, whose progress is described in this paper, builds on the final
release of ESC/Java from DEC/SRC in several ways. It parses all of JML,
thus can be used with the growing body of JML-annotated Java code;
it has additional static checking capabilities; and it has been designed,
constructed, and documented in such a way as to improve the tool’s
usability to both users and researchers. It is intended that ESC/Java2 be
used for further research in, and larger-scale case studies of, annotation
and verification, and for studies in programmer productivity that may
result from its integration with other tools that work with JML and
Java. The initial results of the first major use of ESC/Java2, that of the
verification of parts of the tally subsystem of the Dutch Internet voting
system are presented as well.

1 Introduction

The ESC/Java tool developed at DEC/SRC was a pioneering tool in the ap-
plication of static program analysis and verification technology to annotated
Java programs [13]. It was a successor to the ESC/Modula-3 tool [22], using
many of the same ideas, but targeting a “mainstream” programming language.
ESC/Java operates on full Java programs, not on special-purpose languages. It
acts modularly on each method (as opposed to whole-program analysis), keeping
the complexity low for industrial-sized programs, but requiring annotations on
methods that are used by other methods. The program source and its specifica-
tions are translated into verification conditions; these are passed to a theorem

? ? ? Formerly with the Security of Systems Group at the University of Nijmegen.

prover, which in turn either verifies that no problems are found or generates a
counterexample indicating a potential bug. The tool and its built-in prover op-
erate automatically with reasonable performance and need only program anno-
tations against which to check a program’s source code. The annotations needed
are easily read, written and understood by those familiar with Java and are par-
tially consistent with the syntax and semantics of the separate Java Modeling
Language (JML) project [1,19]. Consequently, the original ESC/Java (hereafter
called ESC/Java) was a research success and was also successfully used by other
groups for a variety of case studies (e.g., [16,17]).

Its long-term utility, however, was lessened by a number of factors. First, as
companies were bought and sold and research groups disbanded, there was no
continuing development or support of ESC/Java, making it less useful as time
went by. As a result of these marketplace changes, the tool was untouched for
over two years and its source code was not available.

The problem of lack of support was further compounded because its match
to JML was not complete, and JML continued to evolve as research on the needs
of annotations for program checking advanced. This unavoidable divergence of
specification languages made writing, verifying, and maintaining specifications
of non-trivial APIs troublesome (as discussed in Section 5).

Additionally, JML has grown significantly in popularity. The activities of
several groups [1,3,19,27,28] generated a number of tools that work with JML.
Thus, many new research tools worked well with “modern” JML, but ESC/Java
did not.

Finally, some of the deficiencies of the annotation language used by ESC/Java
reduced the overall usability of the tool. For example, frame conditions were
not checked, but errors in frame conditions could cause the prover to reach
incorrect conclusions. Also, the annotation language lacked the ability to use
methods in annotations, limiting the annotations to statements only about low-
level representations.

The initial positive experience of ESC/Java inspired a vision for an industrial-
strength tool that would also be useful for ongoing research in annotation and
verification. Thus, when the source code for ESC/Java was made available, the
authors of this paper began the ESC/Java2 project.

This effort has the following goals: (1) to make the source consistent with
the current version of Java; (2) to fully parse the current version of JML and
Java; (3) to check as much of the JML annotation language as feasible, consis-
tent with the original engineering goals of ESC/Java (usability at the expense
of full completeness and soundness); (4) to package the tool in a way that en-
ables easy application in a variety of environments, consistent with the licensing
provisions of the source code release; and (5) as a long-term goal, and if appro-
priate, to update the related tools that use the same code base (Calvin, RCC,
and Houdini [12]) and to integrate with other JML-based tools. This integration
will enable testing the tool’s utility in improving programmer productivity on
significant bodies of Java source; the tool will also serve as a basis for research
in unexplored aspects of annotation and static program analysis.

We have released over seven alpha versions of ESC/Java2. The latest ver-
sion is available on the web1 and we encourage experimentation and feedback.
The source code is available (and additional contributors are welcome) and is
subject to fairly open licensing provisions. The discussion below of various fea-
tures of JML and ESC/Java2 is necessarily brief; more detail is available in the
implementation notes that are part of an ESC/Java2 release.

The subsequent sections will discuss the most significant changes in creating
ESC/Java2, the extensions to static checking, the backwards incompatibilities
introduced, unresolved semantic issues in JML, and the direction of the ongoing
work in this project. Also discussed is ESC/Java2’s first serious use: the verifi-
cation of portions of the tally subsystem of the Dutch Internet voting system.

Appendices list the details of the enhancements to ESC/Java and those fea-
tures of JML that are not yet implemented in ESC/Java2. We fully acknowledge
that the on-going work described here builds on two substantial prior efforts:
the definition of the Java Modeling Language and the production of ESC/Java
and the Simplify prover in the first place.

2 JML Example

The Java Modeling language is described in detail in several other publications
([19] and various papers listed at [1]), so here we will give just one example
showing some of the syntax. The class in Fig. 1 uses an array to implement a
List. A few methods with partial specifications are shown. They demonstrate
the following features of JML:

– JML annotations are contained in comments beginning with //@ or /*@.
– model import statements declare classes imported for use in annotations.
– spec public indicates that the field named seq has public visibility in spec-

ifications.
– The invariant states that after construction seq is never null and is an array

with Objects as elements.
– The requires keyword states a precondition for the reverse method, namely

its argument is presumed to be non-null.
– The modifies keyword states a frame condition for the reverse method,

namely that the only fields that are assigned during its execution are the
elements of the out argument.

– The signals keyword states a postcondition for the reverse method that
must hold if an exception is thrown, in this case that it never throws a
NullPointerException.

– The ensures keyword states a postcondition for the reverse method that
must hold if the method terminates normally.

– The model declaration declares a public field used in specifications, typically
as an abstract representation of the class. In this case, the class represents
a List.

1 http://www.niii.kun.nl/ita/sos/projects/escframe.html

http://www.niii.kun.nl/ita/sos/projects/escframe.html

//@ model import java.util.List;

//@ model import java.util.ArrayList;

public class Example {

/*@ spec_public */ private Object[] seq;

//@ in list;

//@ maps seq[*] \into list;

//@ invariant seq != null && \elemtype(\typeof(seq)) == \type(Object);

//@ requires out != null;

//@ modifies out[*];

//@ signals (NullPointerException) false;

//@ ensures seq.length > 0 ==> out[0] == seq[seq.length-1];

public void reverse(Object[] out) {

int i = 0;

int j = seq.length;

while (i < seq.length) out[i++] = seq[--j];

}

//@ public model List list;

//@ private represents list <- toList(seq);

/*@ requires input != null;

@ ensures \result != null;

@ pure

@ private model List toList(Object[] input) {

@ List list = new ArrayList(input.length);

@ for (int i=0; i<input.length; ++i) list.add(input[i]);

@ return list;

@ }

@*/

//@ requires i >= 0 && i < length();

//@ modifies list;

public void insert(int i, Object o) { seq[i] = o; }

//@ private normal_behavior

//@ ensures \result == seq.length;

//@ pure

public int length() { return seq.length; }

}

Fig. 1. A List class with a partial specification.

– The represents statement indicates the relationship between the value of
the model field and the implementation.

– The next set of declarations constitute a model method declaration and its
specifications; a model method is only used in annotations and need not have
an implementation.

– The modifies clause on the insert method indicates that it may modify
the value of the model field list or any field in its datagroup; the in and map
annotations on the declaration of seq stipulate that the seq field and its array
elements are in the list datagroup.

– The pure modifier on the length method indicates that that method has no
side effects (it does not assign to any fields).

This class will compile with javac and will pass all the checks of the jml
checker. If it is subjected to the ESC/Java2 tool described in this paper, three
warnings are produced, correctly pointing out three potential problems with this
code:

– The default constructor does not set the value of seq to a non null array as
required by the invariant.

– The assignment to out[i++] on line 16 is problematic because the index
may be too large for the array; this is fixed by stating that the length of out
must be equal to the length of seq.

– An additional warning on that line indicates that the type of the out array
may possibly not allow assignments of Object references to its elements.

3 Changes to DEC/SRC ESC/Java

Creating ESC/Java2 required a number of changes to the ESC/Java tool. Here
we present the most significant of these.

3.1 Java 1.4

The original work was performed from 1998 to 2000, and Java has evolved since
then.2 The addition required by Java 1.4 is support for the Java assert state-
ment.

JML itself contains a similar assert statement. Hence, the user may make
a choice between two behaviors. A Java assert statement may be interpreted
simply as another language feature whose behavior is to be modeled. The corre-
sponding behavior is to raise an AssertionError exception under appropriate
circumstances. Alternatively, a Java assert statement may be interpreted as a
JML assert statement. In this case, the static checker will report a warning if
the assertion predicate cannot be established. Both alternatives are available
through user-specified options.
2 In fact, Java 1.5 went beta recently. No work has begun on parsing or statically

checking Java 1.5 code. Interested parties are welcome to contact the authors with
regard to this topic.

3.2 Current JML

The Java Modeling Language is a research project in itself; hence the JML
syntax and semantics are evolving and are somewhat of a moving target (and
there is as yet no complete reference manual). However, the core language is
reasonably stable. The following are key additions that have been implemented;
other changes that relate primarily to parsing and JML updates are listed in the
Appendix:

– inheritance of annotations and of non null modifiers that is consistent with
the behavioral inheritance of JML;

– support for datagroups and in and maps clauses, which provides a sound
framework for reasoning about the combination of frame conditions and
subtyping;

– model import statements and model fields, routines, and types, which allow
abstraction and modularity in writing specifications;

– enlarging the use and correcting the handling of scope of ghost fields, so that
the syntactic behavior of annotation fields matches that of Java and other
JML tools.

In addition, all of the differences between JML and ESC/Java noted in the JML
Reference Manual have been resolved.3

3.3 New verification checks

Though all of JML is parsed, not all of it is currently checked. ESC/Java con-
centrated on checking for possible unexpected exceptions arising from condi-
tions such as null pointers or out-of-bounds array indices, since these did not
need annotations to be found; annotations were used, however, to state condi-
tions on method arguments or class fields that would preclude such errors. Thus
ESC/Java was capable of checking the pre- and post-conditions of methods as
well. However, these could only be expressed at a low-level given the limitations
of the ESC/Java input language.

The expanded capabilities of ESC/Java2 allow more thorough checking at a
higher level of abstraction. This has required only minor changes in the back-
ground axioms used by the theorem prover (mostly regarding primitive types,
though additions to handle the semantics of String objects are needed). Most
of the changes are implemented by the appropriate translation of JML features
into the theorem prover’s input logic. The space available in this paper permits
only a summary of the embedding of the above into the underlying ESC/Java
logic4.

Static checking of the following features has been added to that performed
by ESC/Java.

3 The tools still differ in (a) the search order for refinement files on the classpath and
(b) which methods may be declared as helper methods.

4 Subsequent papers are planned that will describe these embeddings in more detail.

The constraint and initially clauses These two clauses are variations on the more
common invariant clause. They apply to the whole class. A constraint states
a condition that must hold between the pre-state and the post-state of every
method of a class. For example,

constraint maxSize == \old(maxSize);
states that maxSize is not changed by any method of the class. It is implemented
by adding the predicate as a postcondition of every (non-helper) method in the
type (and its derived types).

Similarly, initially states a condition that must hold of every object after
construction. It is implemented by adding its predicate as a postcondition of
every (non-helper) constructor of the type (but not of its derived types).

The \not modified expression The not modified construct is a way of saying,
within a postcondition, that a particular expression has the same value in the
pre-state and the post-state. That is,

\not modified(x+y) ≡ ((x+y) == \old(x+y)) .
Uses of the expression in postconditions are expanded inline according to this
definition.

Checking of datagroups and frame conditions JML contains syntax to define
datagroups [24]. With datagroups, the items in an assignable clause may rep-
resent sets of program locations, and those sets may be extended by subtypes.
Each specification case of a routine may be guarded by a precondition and may
specify the set of store locations that may be assigned to.

There are a number of cases to be considered in a full implementation. We
will discuss just one here: an assignment statement that has a left-hand side of
expr.field. For this to be a legal assignment with respect to the specifications,
either (a) the expr must evaluate to an object that has been allocated since the
beginning of the execution of the method, or (b) it must be the case that for
every specification case of the method containing the assignment for which the
precondition is true (in the pre-state) there is at least one store location in the
list of assignable locations that matches expr.field. To match, the field names
must be the same and the expr values must evaluate to the same object. The
matching is complicated by the variety of syntax (e.g. expr.* matches any field
of expr) and by the fact that a given field designation may have an accompanying
datagroup and the match may be to any element of the datagroup. All of this
syntax is parsed, and checks are implemented in the logic except where induction
is needed to handle recursive definitions.

Recursive definitions of frame conditions (arising from recursive structures
such as linked lists and trees) are indeed the most substantial complication
in checking datagroups. As an example, consider the datagroup of all of the
‘next’ fields of a linked list. ESC/Java2 currently deals with this by unrolling
the recursion to a fixed depth; since in ESC/Java loops are also unrolled to a
fixed number of iterations, this solution handles common cases of iterating over
recursive structures.

Annotations containing method and constructor calls JML, but not ESC/Java,
allows pure method and constructor calls (that is, methods and constructors
without side-effects) to be used in annotations. This allows both a degree of
abstraction and more readable and writable specifications.

ESC/Java2 supports the JML syntax and also performs some static checking.
The underlying prover, Simplify, does support function definitions and reasoning
with functions. But, as is the rule in first-order logic, the result of a function
in Simplify depends only on its arguments and not on hidden arguments or on
global structures referenced by the arguments. Consequently there is a mismatch
between the concept of a pure method in Java and the concept of a function in
the prover. However, a moderate degree of checking can be performed without
resorting to a full state-based translation and logic if we (a) identify some meth-
ods as functions, where possible, (b) include the current state of the heap as an
additional uninterpreted parameter, and (c) incorporate the specifications of the
called method as additional axioms.

Dynamic allocations of objects using constructors are simply static method
calls that return new objects and are treated in the same way as other method
calls. The logic includes axioms that ensure that a newly allocated object is
distinct (reference values are unequal) from any previously allocated object.
Dynamic allocations of arrays are translated into first-order logic as functions
without difficulty, as they were in ESC/Java.

model fields and represents clauses The combination of represents clauses and
model fields provides a substantial benefit in abstraction, especially since the
representations may be provided by a subtype [8]. Simple representations can be
implemented in ESC/Java2 by inlining the representation wherever the model
field is used in an annotation. However, that proves not to be workable in larger
systems. Instead, we translate instances of model fields as functions of the object
that owns them and the global state (because model fields can depend upon
fields in other, non-owner, objects). This allows a useful degree of reasoning
when combined with the class invariants that describe the behavior of the model
fields.

The Simplify theorem prover used by both ESC/Java and ESC/Java2 remains
unchanged, except for being compiled for a new platform (Apple’s OS X). It is
written in Modula-3 and consequently requires compilation for each supported
platform. Although the prover has definite limitations, as pointed out below,
revising it would be a significant project in its own right.

3.4 Backwards incompatibilities

The ESC/Java specification language and JML arose separately; there was some
initial but incomplete work to unify the two [20]. The ESC/Java2 project intends
to have the tool reflect JML as precisely as reasonable. In some cases, discussion
about differences resulted in changes to JML. In a few cases, some backwards

incompatibilities in ESC/Java were introduced. The principal incompatibilities
are these:

– The semantics of inheritance of specification clauses and of non null mod-
ifiers was modified to match that defined by JML, since the work on JML
resulted in an interpretation consistent with behavioral subtyping. JML has
a standalone also keyword that indicates there are inherited explicit or
implicit specifications; its interpretation of specification inheritance is con-
sistent with behavioral subtyping. By contrast, ESC/Java’s use of inher-
ited specifications had limitations and was a known source of soundness
problems [23]. See the section titled “Inheritance and non null” in the
ESC/Java2 Implementation Notes for more details [10].

– The specification modifies \everything is now the default frame axiom.
– The syntax and semantics of initially, readable if and monitored by

have changed.
– ESC/Java2 forbids bodies of (non-model) routines to be present in non-Java

specification files.

4 Unresolved semantic issues

The work on ESC/Java2 has been useful in exposing and resolving semantic
issues in JML. Since ESC/Java2 is built on a different source code base than
other JML tools, differences of interpretation in both syntax and semantics arise
on occasion. These are generally resolved and documented via mailing list dis-
cussions5 by interested parties. There are, however, still unresolved issues, most
of which are the subject of ongoing research.

– pure routines: It is convenient and modular to use model and Java methods
within specifications (model methods are methods defined for annotations
only and not part of the Java source, such as the toList method in Fig. 1). The
semantics of such use is clearer and simpler if such routines are pure, that is,
they do not have side-effects.6 This is important when evaluating annotations
during execution, since the checking of specifications should not affect the
operation of the program being checked. Side-effects also complicate static
reasoning. However, some side-effects are always present, such as changes
to the stack or heap or external effects such as the passage of time. Some
are often overlooked but can be consequential, such as locking a monitor.
Others the programmer may see as innocuous, benevolent side-effects, such
as maintaining a private cached value or logging debugging information in an
output file. An interpretation of the combination of purity and benevolent (or

5 See jmlspecs-interest@lists.sourceforge.net,
jmlspecs-developers@lists.sourceforge.net, and
jmlspecs-escjava@lists.sourceforge.net or the corresponding archives at http:
//sourceforge.net/projects/jmlspecs

6 Non-pure methods may be used within annotations in model programs, which are
not discussed in this paper.

http://sourceforge.net/projects/jmlspecs
http://sourceforge.net/projects/jmlspecs

ignorable) side-effects that is suitable for both static and run-time checking
and is convenient and intuitive for users is not yet available. (See also the
discussion of purity checking in [18].)

– exceptions in pure expressions: The expressions used in annotations must
not have side-effects, but they may still throw exceptions. In that case the
result is ill-defined. A semantics that is suitable for both run-time checking
and static verification needs to be established.

– initialization: The authors are not aware of any published work on specifying
the initialization of classes and objects in the context of JML; initial work
formalizing \not initialized was only recently completed for the Loop
tool. This task includes providing syntax and semantics for Java initializa-
tion blocks, JML’s initializer and static initializer keywords, and
formalizing the rules about order of initialization of classes and object fields
in Java.

– datagroups: The in and maps clauses and the datagroup syntax are designed
to allow the specification of frame conditions in a sound way that is extensible
by derived classes. We do not yet have experience with the interaction among
datagroups, the syntax for designating store locations, and either reasoning
about recursive data structures or checking them at run-time.

– unbounded arithmetic: Chalin [7] has proposed syntax and semantics to en-
able specifiers to utilize unbounded arithmetic in a safe way within annota-
tions. Tool support and experience with these concepts is in progress. Axioms
and proof procedures will be needed to support this work in static checkers.

There are other outstanding but less significant issues concerning helper anno-
tations, model programs and the weakly, hence by, measured by, accessible
and callable clauses.

5 Usage experience to date

The SoS group at the University of Nijmegen, along with other members of
the European VerifiCard Project7, has used ESC/Java for several projects. For
example, Hubbers, Oostdijk, and Poll have performed verifications of Smart
Card applets using several tools, including ESC/Java [17]. Hubbers has also
taken initial steps integrating several JML-based tools [16].

These and other VerifiCard projects relied upon the specifications of the
Java Card 2.1.1 API written and verified by Poll, Meijer, and others [26]. This
specification originally came in two forms: one “heavyweight” specification that
used JML models, heavyweight contract specifications, and refinements, and
another “lightweight” specification that was meant to be used with ESC/Java
and other verification tools like Jack, Krakatoa, and the Loop tool [2,4,25].

Writing, verifying, and maintaining these two specifications was a trouble-
some experience. Because of limitations of various tools which depended upon the

7 http://www.verificard.org/

http://www.verificard.org/

specifications, several alternate forms of specifications were required. Addition-
ally, it was sometimes the case that the alternate forms were neither equivalent
nor had obvious logical relationships among them.

This experience was one of the motivators for the SoS group’s support of this
work on ESC/Java2. Now that multiple tools are available that fully cover the
JML language, the incidence of specification reuse is rising and painful mainte-
nance issues are becoming a thing of the past. As a result, early evidence for the
success of this transition is beginning to appear.

5.1 Transitional Verifications

First, the specifications of a small case study [5] were updated and re-verified
by one of this paper’s authors (Kiniry) using ESC/Java2. The original work de-
pended upon “lightweight” JML specifications of core Java Card classes and the
verification was performed with ESC/Java and the Loop tool. The re-verification
effort used the full “heavyweight” Java and Java Card specifications and was ac-
complished in a single afternoon by an ESC/Java expert.

Second, several members of the SoS group are contributing to updating the
“heavyweight” JML specifications of the Java Card API. As a part of this work,
the Gemplus Electronic Purse case study, which has been verified partially with
ESC/Java [6] and partially with the Loop tool [5], is being re-verified completely
with ESC/Java2 using “heavyweight” specifications.

Finally, recent attempts at verifying highly complex Java code examples writ-
ten by Jan Bergstra and originally used as stress-tests for the Loop tool have
been encouraging. Methods that originally took a significant amount of interac-
tive effort to verify in PVS are now automatically verified in ESC/Java2, much
to the surprise of some of the Loop tool authors. This work has caused some
re-evaluation of the balance between interactive and automated theorem proving
in the SoS group.

5.2 Verification of an Electronic Voting Subsystem

The first major partial verification using ESC/Java2 took place in early 2004.
The Dutch Parliament decided in 2003 to construct an Internet-based remote

voting system for use by Dutch expatriates. The SoS group was part of an expert
review panel for the system and also performed a black-box network and system
security evaluation of this system in late 2003. A recommendation of the panel
was that a third party should construct a redundant tally system. Such a second
system would ensure a double-check of the election count with an independent
system. It was also thought that such an external implementation would provide
some third-party review of the original work, as the new implementation would
depend entirely upon system design documentation and data artifacts (e.g. can-
didate and vote files); no source code would be shared, or even seen, by the team
implementing the redundant system.

The SoS group bid on the construction of this new system, emphasizing the
fact that they would use formal methods (specifically, JML and ESC/Java2) to

specify, test, and verify the tally system. The bid was successful; as a result the
SoS group was contracted to write the tally system.

The most challenging aspect of the contract was not the use of formal meth-
ods. Instead, it was the strict time requirements of the contract, as the system
was to be used in the upcoming European elections. In particular, the SoS group
was asked to construct the vote counting system (henceforth called the KOA
system) in approximately four weeks, with only three developers.

Development Methodology To approach this problem, the three developers
(Dr. Engelbert Hubbers, Dr. Martijn Oostdijk, and the second author) parti-
tioned the system into three subcomponents: file I/O, graphical I/O, and core
data structures and algorithms. It was decided that, due to the challenges in-
herent in full system verification and the restricted time allotted to the project,
while all subsystems would be annotated with JML, only the third “core” sub-
system (Dr. Kiniry’s responsibility) would be fully elaborated in specification.

Additionally, ESC/Java2 would only be used on the core subsystem. In the
allotted time a “best-effort” verification would be attempted, in addition to
all other standard software engineering practices. This approach is a standard
strategy for lightweight use of formal methods [9].

Table 1. KOA System Summary

File I/O Graphical I/O Core

classes 8 13 6
methods 154 200 83
NCSS 837 1,599 395
Specs 446 172 529
Specs:NCSS 1:2 1:10 5:4

Table 1 summarizes the size (in number of classes and methods), complexity
(non-comment size of source, or NCSS for short), and specification coverage
of the three subsystems, as measured with the JavaNCSS tool version 20.40
during the week of 24 May, 2004. Assertions were counted by simply counting
the number of uses of appropriate core specification keywords (requires, ensures,
invariant, non null, in, set, and modifies).

The size of the code and specifications gives a strong indication of the com-
plexity of the verification effort. Longer methods take significantly more time
to specify and verify than short ones. Classes with many methods, on the other
hand, do not necessarily take much more time to deal with than shorter classes,
as effort is coupled to the complexity of the methods, their specs, and the class
invariants (e.g., many short, simple methods are trivial to verify, while one long
method might take days).

There is very little inheritance in this system. Visual components all inherit
from a top-level Task class which implements all state changes in response to

external input, and the I/O classes inherit from an AbstractObjectReader, an
Apache licensed helper class. Other than that, all classes have no parent (beside
Object).

Because there is little inheritance and we adopt a closed-system view on
the vote tally system (no classloading is permitted), ESC/Java2’s weak strong
support for specifying and reasoning about dynamic binding is not an issue.

Specification Coverage and Methodology Unsurprisingly, the GUI portion
of KOA is the largest subsystem with the lightest specification coverage, having
approximately 1 annotation for every 10 lines of code. The focus of the GUI
subsystem specification is a finite state machine that represents the state of the
GUI. The state of the KOA application is tightly coupled to this GUI state
machine as the vote counting process is highly serialized.

CLEARED CANDIDATES_IMPORTED

PUBLIC_KEY_IMPORTED

PRIVATE_KEY_IMPORTED

VOTES_COUNTED

REPORT_GENERATED

VOTES_IMPORTEDINIT

VOTES_DECRYPTED

Fig. 2. KOA State Diagram

Figure 2 contains a diagram that summarizes this state machine. The state
of the system is represented in a (spec public) field “state” of the main class
of the application. The state machine is formally modeled using the standard
mechanisms developed in the past by the SoS Group [15].

The file I/O subsystem exhibits better specification coverage, much of which
focuses on contracts to ensure that data-structures in the core subsystem are
properly constructed according to the contents of input files.

The core subsystem understandably has the highest specification coverage,
at over one line of specification for every line of code. This part of the system was
designed by contract, and a small-step development process was used through-
out (i.e., every time a single line of the specification or the code was changed
ESC/Java2 was re-executed). Contractual specifications (e.g., requires/ensures-
style and invariants) accounted for the vast majority of the specification; asser-
tions and invariants were only used to assist the verification process.

The verification of the key properties of the system, particularly the property
of having a correct tally of votes, are directly tied to the overall state of the
system using invariants of the form

invariant (state >= <STATE>) ==> (state-field != null);

where the states of the system form a total order. Such an invariant says that, if
the state of the system is at least <STATE>, then the appropriate representation
for that state, captured in the state-field’s datatype is well-formed. This is a
strong claim because if state-field is non-null, then not only is it initialized,
but all of its invariants hold.

At this time, verification coverage of the core subsystem is good, but not
100%. Approximately 10% of the core methods (8 methods) are unverified due
to issues with ESC/Java’s Simplify theorem prover (e.g., either the prover does
not terminate or terminates abnormally, as discussed below). Another 31% of
the core methods (26 methods) have postconditions that cannot be verified,
typically due to completeness issues discussed above, and 12% of the methods
(10 methods) fail to verify due to invariant issues, most of which are due to
suspected inconsistencies in the specifications of the core Java class libraries
or JML model classes. The remaining 47% (39 methods) of the core verifies
completely.

Since 100% verification coverage was not possible in the timeframe of the
project, and to ensure the KOA application is of the highest quality level possible,
a large number unit tests were generated with the jmlunit tool for all core classes.
A total of nearly 8,000 unit tests were generated, focusing on key values of the
various datatypes and their dependent base types. These tests cover 100% of the
core code and are 100% successful.

Impressions of ESC/Java2 ESC/Java2 made a very positive impression on
the KOA developers. Its increased capabilities as compared to ESC/Java, par-
ticularly with regards to handling the full JML language, the ability to reason
with models and specifications with pure methods, are very impressive. And,
while the tool is still classified as an “alpha” release, we found it to be quite
robust (perhaps unsurprising given its history, the use of JML and ESC/Java2
in and on its own source code, and the fact that it is passed through seven alpha
releases thus far). But there are still a number of issues with ESC/Java2 and
JML that were highlighted by the KOA verification effort.

The primary issues that arose include:

– String semantics in ESC/Java2 are incomplete. In particular, one cannot
reason effectively about String concatenation or equality. While Java Strings
are certainly a non-trivial type, they are effectively a pseudo-base type be-
cause of their widespread use. Thus, it is vital that this issue be addressed
as soon as possible.

– Issues with reasoning about “representation-less” model variables. If a class
declares a model variable but provides no statement about how that model
relates to the implementation of the class (using a represents clause or
similar), then ESC/Java2 cannot verify assertions that use the model. We
believe that a representation-less model variable is equivalent to a ghost
variable since it is being used as a specification-only variable in an API spec.
Thus, by replacing problematic model variables with ghost variables in API
specifications we can successfully perform verifications using the APIs. This

problem indicates either a problem with the design and/or use of model
variables in JML, or an implementation issue with ESC/Java2.

– Inconsistencies and ambiguities in the specification of core APIs, particularly
classes in the java.lang and java.util packages and JML model classes.
This is the first large-scale verification effort using “full” JML specifications
of the core JDK. These “full” specifications are much more complete and
complex than those that were used with ESC/Java. As these core specifica-
tions have never been formally analyzed for consistency or completeness, it is
not surprising that the KOA verification effort had problems with their use.
It is expected that over time, with more use by a range of JML-compatible
tools the core specifications will become more consistent and complete to
the benefit of all JML tool users.

– Completeness issues with first-order predicates. First-order predicates are
expressed with the forall and exists constructs in JML. Only some of
these predicates can be used and/or verified in JML-based tools, including
ESC/Java2. Unfortunately, many of the most interesting invariants in non-
trivial systems can only be expressed using such constructs. Thus, more focus
needs to be put on understanding and reasoning about such assertions.

– Aliasing issues and specification convenience constructs for such. As usual,
reasoning about reference types and avoiding aliasing was one of the key
issues in verifying the KOA application. For example, frequently we wished
to say that the elements of a set of references were pairwise unequal. The only
way to state this in JML today is quite cumbersome, thus the introduction
of a new specification construct for such seems warranted.

– The Simplify prover backend and alternate provers. Simplify is a relatively
robust automatic first-order prover, especially given its age and the fact that
no one has supported it in many years. Unfortunately, Simplify sometimes
fails catastrophically in one of two ways: it crashes due to an internal excep-
tion or assertion failure, or it (rarely) consumes as much memory as possible
and halts. Neither of these situations is reasonable, of course, but as there
is no support for Simplify, the problems indicated by these affects are rarely
correctable. It is our intention to initially augment, then eventually replace,
Simplify with an alternative modern, supported prover.

6 Ongoing work

The work on ESC/Java2 is continuing on a number of fronts.

Language Issues Two obvious and related ongoing tasks are the completion of
additional features of JML, accompanied in some cases by additional research to
clarify the semantics and usability of outstanding features of JML. Usage of JML
is now broad enough that an accompanying formal reference document would
be valuable. As tools such as ESC/Java2 become more widely used, users will
also appreciate attention to performance, to the clarity of errors and warnings,
and to the overall user experience such tools provide.

Case Studies The current implementation supports the static checking of a sta-
ble core of JML. With this initial implementation of frame condition check-
ing, of model fields, represents clauses and use of routine calls in annotations,
ESC/Java2 can now be used on complex and abstract specifications of larger
bodies of software. Consequently, there is a considerable need for good experi-
mental usage studies that confirm that this core of JML is useful in annotations,
and that the operation of ESC/Java2 (and Simplify) on that core is correct and
valuable.

Verification Logic The logic into which Java and JML are embedded in both
ESC/Java and ESC/Java2, by design and admission of the original authors,
neither identifies all potential errors (e.g., because not all aspects of Java are
modeled in the logic) nor avoids all false alarms (e.g., because of limitations
in the prover). This was the result of an engineering judgment in favor of per-
formance and usability. Research studying expanded and larger use cases may
show whether this design decision is generally useful in practical static check-
ing or whether a fuller and more complicated state-based logic is required for
significant results to be obtained.

A related issue is the balance between automated and manual proof con-
struction. Use of verification logics will likely be limited to narrow specialties
as long as proof construction is a major component of the overall programming
task. Thus, automation is essential, though it is expected that full automation
is infeasible. The degree of automation achievable will continue to be a research
question. However, we believe that broad adoption of automated tools for pro-
gram checking will require that users only need interact at high levels of proof
construction.

User Feedback The purpose of using theorem provers for static analysis, run-
time assertion checking, or model checking is to find errors and thereby improve
the correctness of the resulting software. Thus, the orientation of a tool must
be towards effectively finding and interpreting examples of incorrect behavior. A
complaint (e.g., [14]) in using such technologies is that it is difficult to determine
a root cause from the counterexample information provided by the tool, whether
it is a failed proof or an invalid test or execution history. The ESC/Java project
implemented some work towards appropriately pruning and interpreting coun-
terexample and trace information [21], but there remains room for improvement.
Machine reading of the Simplify output coupled with other tools is also a means
to easier interpretation [11].

Tool Integration Finally, though not part of this specific project, an integration
of tools that support JML would be beneficial for programmer productivity.
A productive programmer’s working environment for a large-scale project that
uses these tools would need them to be integrated in a way that they seamlessly
communicate with one another. A programmer using the tools would naturally
move among the various tasks of designing, writing, testing, annotating, verifying
and debugging, all the while reading, writing and checking specifications. Design,

specifications and code might all be built up incrementally. Thus, the tools would
need to be integrated in a way that allows efficient and iterative behavior.

7 Conclusion

The progress and case studies described above have shown that ESC/Java2 is
ready for serious evaluation and use, even in its early “alpha” releases. Our
ability to verify large portions of a critical, public system in a very short time
frame is a strong statement about the state of the tool and the underlying theory
of extended static checking.

Additional evidence comes from several groups around the world that are
using ESC/Java2 for instruction and research. We are aware of over a half dozen
groups that are using ESC/Java2 for new research in verification, and nearly ten
courses are using it for instruction in software engineering, verification, peda-
gogical instruction of Java, and grading. We continue to see growing interest in
ESC/Java2, verification, and extended static checking in general.

One can observe this work in tool creation and evaluation from a number
of perspectives. Certainly such work creates working prototypes that test in
practice theories of programming and specification language semantics. It also
exercises and validates ideas in automated logical reasoning. We prefer to use
the viewpoint of programming productivity, particularly given the industrial
working environment of the first author. In that context we observe the existence
and general use across multiple research groups of the combination of various
tools that support using JML with Java programs; this suggests to us that the
syntax and semantics of the core of JML are sufficiently useful and natural to
provide a basis for future wider use. With respect to logical reasoning, a useful
degree of automation is achievable in at least some aspects of static checking
tasks; removing the details of proof construction from a programmer’s tasks is
essential to larger scale acceptance of such tools.

However, the surrounding issues are as relevant to programmer acceptance
and productivity. Tools must have intuitive and unsurprising behavior. They
must be efficient in elapsed run-time, but also in the time needed to interpret
and act upon the results. They must integrate well with other tools of the same
family and with commonly used programmer’s working environments.

There is progress on enough of the above vectors that one might well be
optimistic about the eventual success of the enterprise as a whole. After all, the
goal need not be fully automated verification of an arbitrary computer program.
Reflect that a computer-produced proof of a mathematical conjecture that can-
not be understood at least in its broad outlines by mathematicians leaves those
mathematicians unsatisfied and unsettled with respect to the proof. Similarly,
we expect that “verifications” of programs whose overall design is incomprehen-
sible to readers of the program (not to mention its author) will not engender
much confidence in the verification. If programming is writing for others and we
expect that the authors could explain their programs to their colleagues, we may
well have a chance at being able to explain those programs to a computer.

8 Acknowledgments

The authors would like to acknowledge both the work of the team that developed
ESC/Java as well as Gary Leavens and collaborators at Iowa State University
who developed JML. In addition, Leavens and students engaged in and helped
resolve syntactic and semantic issues in JML raised by the work on ESC/Java2.
These teams provided the twin foundations on which the current work is built.
Other research groups that use and critique both JML and ESC/Java2 have
provided a research environment in which the work described here is useful.
Thanks are due also to Leavens for his comments on an early draft of this paper.

Joseph Kiniry is supported by the NWO Pionier research project on Program
Security and Correctness and the VerifiCard research project.

References

1. Many references to papers on JML can be found on the JML project website,
http://www.cs.iastate.edu/~leavens/JML/papers.shtml.

2. J. v. d. Berg and B. Jacobs. The LOOP compiler for Java and JML. In T. Margaria
and W. Yi, editors, TACAS01, Tools and Algorithms for the Construction and
Analysis of Software, number 2031 in Lecture Notes in Computer Science, pages
299–312. Springer–Verlag, 2001.

3. L. Burdy, Y. Cheon, D. R. Cok, M. Ernst, J. Kiniry, G. T. Leavens, K. R. M.
Leino, and E. Poll. An overview of JML tools and applications. In T. Arts and
W. Fokkink, editors, Eighth International Workshop on Formal Methods for Indus-
trial Critical Systems (FMICS 03), volume 80 of Electronic Notes in Theoretical
Computer Science (ENTCS), pages 73–89. Elsevier, June 2003.

4. L. Burdy and A. Requet. JACK: Java applet correctness kit. In Proceedings, 4th
Gemplus Developer Conference, Singapore, Nov. 2002.

5. J. v. C.-B. Breunesse, B. Jacobs. Specifying and verifying a decimal representation
in Java for smart cards. In C. R. H. Kirchner, editor, Algebraic Methodology and
Software Technology, volume 2422 of Lecture Notes in Computer Science, pages
304–318. Springer–Verlag, 2002.

6. N. Cataño and M. Huisman. Formal specification of Gemplus’ electronic purse
case study using ESC/Java. In Proceedings, Formal Methods Europe (FME 2002),
number 2391 in Lecture Notes in Computer Science, pages 272–289. Springer–
Verlag, 2002.

7. P. Chalin. JML support for primitive arbitrary precision numeric types: Definition
and semantics. In Proceedings, ECOOP’03 Workshop on Formal Techniques for
Java-like Programs (FTfJP), Darmstadt, Germany, July 2003.

8. Y. Cheon, G. T. Leavens, M. Sitaraman, and S. Edwards. Model variables: Cleanly
supporting abstraction in design by contract. Technical Report 03-10a, Department
of Computer Science, Iowa State University, Sept. 2003. Available from http:

//archives.cs.iastate.edu/.
9. E. Clarke and J. Wing. Strategic directions in computing research: Tools and

partial analysis. ACM Computing Surveys, 28A(4), Dec. 1996.
10. D. R. Cok. Esc/java2 implementation notes, 2004. Included with all ESC/Java2

releases.
11. C. Csallner and Y. Smaragdakis. Check ’n Crash: Combining static checking and

testing. Submitted for publication, 2005.

http://www.cs.iastate.edu/~leavens/JML/papers.shtml
http://archives.cs.iastate.edu/
http://archives.cs.iastate.edu/

12. C. Flanagan and K. R. M. Leino. Houdini, an annotation assistant for ESC/Java.
Lecture Notes in Computer Science, 2021, 2001.

13. C. Flanagan, K. R. M. Leino, M. Lillibridge, G. Nelson, J. B. Saxe, and R. Stata.
Extended static checking for Java. In Proceedings of the ACM SIGPLAN 2002 Con-
ference on Programming Language Design and Implementation (PLDI’02), volume
37, 5 of SIGPLAN, pages 234–245, New York, June 2002. ACM Press.

14. A. Groce and W. Visser. What went wrong: Explaining counterexamples. In
T. Ball and S. Rajamani, editors, Proceedings of SPIN 2003, Portland, Oregon,
volume 2648 of Lecture Notes in Computer Science, pages 121–135, Berlin, May
2003. Springer–Verlag.

15. E. Hubbers, M. Oostdijk, and E. Poll. From finite state machines to provably
correct java card applets. In D. Gritzalis, S. D. C. di Vimercati, P. Samarati,
and S. K. Katsikas, editors, Proceedings of the 18th IFIP Information Security
Conference, pages 465–470. Kluwer Academic Publishers, 2003.

16. E.-M. Hubbers. Integrating Tools for Automatic Program Verification. In M. Broy
and A. Zamulin, editors, Proceedings of the Andrei Ershov Fifth International Con-
ference Perspectives of System Informatics, volume 2890 of Lecture Notes in Com-
puter Science, pages 214–221. Springer–Verlag, 2003. http://www.iis.nsk.su/

psi03.

17. E.-M. Hubbers, M. Oostdijk, and E. Poll. Implementing a Formally Verifiable Secu-
rity Protocol in Java Card. In D. Hutter, G. Müller, W. Stephan, and M. Ullmann,
editors, Proceedings of the First International Conference on Security in Pervasive
Computing, volume 2802 of Lecture Notes in Computer Science, pages 213–226.
Springer–Verlag, 2004. March 12–14, 2003, http://www.dfki.de/SPC2003/.

18. G. T. Leavens, Y. Cheon, C. Clifton, C. Ruby, and D. R. Cok. How the design
of JML accommodates both runtime assertion checking and formal verification.
In F. S. de Boer, M. M. Bonsangue, S. Graf, and W.-P. de Roever, editors, For-
mal Methods for Components and Objects: First International Symposium, FMCO
2002, Leiden, The Netherlands, November 2002, Revised Lectures, volume 2852 of
Lecture Notes in Computer Science. Springer–Verlag, Berlin, 2003.

19. G. T. Leavens, K. R. M. Leino, E. Poll, C. Ruby, and B. Jacobs. JML: nota-
tions and tools supporting detailed design in Java. In OOPSLA 2000 Companion,
Minneapolis, Minnesota, pages 105–106. ACM, Oct. 2000.

20. G. T. Leavens, E. Poll, C. Clifton, Y. Cheon, C. Ruby, D. R. Cok, and J. Kiniry.
JML reference manual. Department of Computer Science, Iowa State University.
Available from http://www.jmlspecs.org, Apr. 2003.

21. K. R. M. Leino, T. Millstein, and J. B. Saxe. Generating error traces from
verification-condition counterexamples. Science of Computer Programming, 2004.
To appear.

22. K. R. M. Leino and G. Nelson. An extended static checker for Modula-3. In
K. Koskimies, editor, Compiler Construction: 7th Internation Conference, CC’98,
volume 1383 of Lecture Notes in Computer Science, pages 302–305. Springer-
Verlag, 1998.

23. K. R. M. Leino, G. Nelson, and J. B. Saxe. ESC/Java user’s manual. Technical
note, Compaq Systems Research Center, Oct. 2000.

24. K. R. M. Leino, A. Poetzsch-Heffter, and Y. Zhou. Using data groups to specify
and check side effects. In Proceedings of the ACM SIGPLAN 2002 Conference on
Programming Language Design and Implementation (PLDI’02), volume 37, 5 of
SIGPLAN, pages 246–257, New York, June 17–19 2002. ACM Press.

http://www.iis.nsk.su/psi03
http://www.iis.nsk.su/psi03
http://www.dfki.de/SPC2003/
http://www.jmlspecs.org

25. C. Marché, C. Paulin-Mohring, and X. Urbain. The Krakatoa tool for certifica-
tion of Java/JavaCard programs annotated in JML. Journal of Logic and Algebraic
Programming, 58(1 & 2):89–106, January–March 2004.

26. H. Meijer and E. Poll. Towards a full formal specification of the Java Card. In
I. Attali and T. Jensen, editors, Smart Card Programming and Security, number
2140 in Lecture Notes in Computer Science, pages 165–178. Springer–Verlag, Sept.
2001.

27. J. W. Nimmer and M. D. Ernst. Static verification of dynamically detected program
invariants: Integrating Daikon and ESC/Java. In Proceedings, First Workshop on
Runtime Verification (RV’01), Paris, France, July 2001.

28. Robby, E. Rodŕıguez, M. B. Dwyer, and J. Hatcliff. Checking strong specifications
using an extensible software model checking framework. Technical Report SAnToS-
TR2003-10, Department of Computing and Information Sciences, Kansas State
University, Oct. 2003.

A Principal changes to ESC/Java

Language semantics
– inheritance of annotations and of non null modifiers that is consistent with

the behavioral inheritance of JML;
– support for datagroups and in and maps clauses, which provides a sound

framework for reasoning about the combination of frame conditions and
subtyping;

– model import statements and model fields, routines, and types, which allow
abstraction and modularity in writing specifications;

– enlarging the use and correcting the handling of scope of ghost fields, so that
the syntactic behavior of annotation fields matches that of Java and other
JML tools;

Language parsing
– parsing of all of current JML, even if the constructs are ignored with respect

to typechecking or verification;
– support for refinement files, which allow specifications to be supplied in files

separate from the source code or in the absence of source code;
– heavyweight annotations, which allow some degree of modularity and nest-

ing;
– auto model import of the org.jmlspecs.lang package, similar to Java’s

auto import of java.lang;
– generalizing the use of \old, set statements and local ghost variables, to

provide more flexibility in writing specifications;
– introduction of the constraint, represents, field, method, constructor,

\not modified, instance, old, forall, pure keywords as defined in JML;
– consistency in the format of annotations in order to match the language

handled by other JML tools;
– equivalence of \TYPE and java.lang.Class;
– a beginning of a semantics for String objects, namely the freshness of the

result of built-in + and equality and inequality of String literals.

In addition, all of the differences between JML and ESC/Java noted in the JML
Reference Manual have been resolved.

B Aspects of JML not yet
implemented in ESC/Java2

Though the core is well-supported, there are several features of JML which are
parsed and ignored, some of them experimental or not yet endowed with a clear
semantics, and some in the process of being implemented. For those interested
in the details of JML and ESC/Java2, the features that are currently ignored
are the following:

– checking of access modifiers on annotations and of the strictfp, volatile,
transient and weakly modifiers;

– the clauses diverges, hence by, code contract, when, and measured by;
– the annotations within implies that and for example sections;
– some of the semantics associated with the initialization steps prior to con-

struction;
– multi-threading support beyond that already provided in ESC/Java;
– serialization;
– annotations regarding space and time consumption;
– full support of recursive maps declarations;
– model programs;
– some aspects of store-ref expressions;
– verification of anonymous and block-level classes;
– verification of set comprehension and some forms of quantified expressions;
– implementation of modifies \everything within the body of routines.

